157. Die Kristallstruktur von 1,4-*trans*-Diaminocyclohexan-dihydrochlorid

von J.D. Dunitz und P. Strickler

(30. VI. 65)

Schon 1921 hat INGOLD [1] die Aufmerksamkeit darauf gelenkt, dass für die C-C-C-Winkel in aliphatischen und alicyclischen Molekeln keineswegs der dem idealen Tetraeder entsprechende Wert von 109°28' angenommen werden muss. Die erwartete Abweichung, im Sinne einer Vergrösserung des C-C-C-Winkels, ist in den letzten Jahren in vielen Fällen zuverlässig beobachtet worden. So liegt für n-Butan ein Wert von 112,4° vor [2]; ähnliche Werte wurden für andere geradkettige Molekeln erhalten [3]. Auch bei der Röntgen-Analyse mittlerer Ringverbindungen wurden signifikante Abweichungen vom Tetraederwinkel festgestellt [4] [5]. Aus den früheren Untersuchungen an Cyclohexan-Derivaten standen dagegen keine wirklich zuverlässigen Werte für die C-C-C-Winkel zur Verfügung. Wir beabsichtigten, diesen Mangel mittels Röntgen-Analyse eines geeigneten Cyclohexan-Derivats zu beheben. In der Zwischenzeit haben DAVIS & HASSEL die mit ihrem neuen Elektronenbeugungs-Apparat gewonnenen Resultate für Cyclohexan veröffentlicht [6]. Sie finden einen durchschnittlichen C-C-C-Winkel von 111,55°. Die vorliegende Arbeit ergibt einen durchschnittlichen Wert von 110,7°. Beide Untersuchungen führen also zu einer leichten Verflachung des Cyclohexanrings, verglichen mit dem aus ideal tetraedrischen Kohlenstoff-Atomen aufgebauten Modell. Die chemischen Konsequenzen einer solchen Verflachung sind unlängst von WOHL diskutiert worden [7].

1. Herstellung der Substanz. Reaktion von Hydroxylamin mit 1,4-Cyclohexandion führt zum entsprechenden Dioxim. Anschliessende Reduktion mit Natrium in Alkohol zum Diamin und Versetzen mit Salzsäure ergibt 1,4-Diaminocyclohexan-dihydrochlorid. Die nach dieser Methode hergestellte Substanz wurde uns von Prof. A. ESCHENMOSER zur Verfügung gestellt. Wir danken für seine entgegenkommende Mitarbeit.

Um für die RÖNTGEN-Untersuchung taugliche Kristalle zu erhalten, wurde eine Probe der Substanz in einem Äthanol-Wasser-Gemisch 1:1 gelöst. Im Exsikkator wurde durch Calciumchlorid das Wasser allmählich entzogen, und durch ein Äthanol-Butanol-Gemisch 1:1 ersetzt. Nach dieser Methode wurden im Verlauf von 1-3 Tagen schöne Kristalle erhalten, als dünne Plättchen oder Nadeln, mit (001) gut entwickelt und [100] als Nadelrichtung.

2. Kristalldaten. 1,4-Diaminocyclohexan-dihydrochlorid, $C_6H_{14}N_2$, 2HCl, M = 187,1. Monoklin, $a = 6,36 \pm 0,01$, $b = 5,27 \pm 0,01$, $c = 14,91 \pm 0,025$ Å, $\gamma = 100^{\circ} \pm 20'$, U = 492,2 Å³, $D_m = 1,248$, Z = 2, $D_x = 1,262$. Raumgruppe $P2_1/n$ (Nr. 14, C_{2h}^5 , «first setting»). Kristallographisch geforderte Molekularsymmetrie: Inversionszentrum ($\overline{1}$). (Damit steht die *trans*-Konfiguration der beiden Aminogruppen bereits fest.)

Die Gitterkonstanten wurden aus Messungen auf 30°-Präzessions-Aufnahmen bestimmt (Cu K_{α} -Strahlung, $\lambda = 1,542$ Å, Mo K_{α} -Strahlung, $\lambda = 0,7107$ Å). Bei den angegebenen Fehlern sind die geschätzten Standard-Abweichungen, sowie apparative Ungenauigkeiten eingeschlossen.

3. Intensitätsmessungen. Die Sammlung der dreidimensionalen Daten erfolgte auf dem von ARNDT & PHILLIPS entwickelten «Linear Diffractometer» [8]. Ein Kristall mit den ungefähren Abmessungen $2,0 \times 0,4 \times 0,03$ mm wurde mit der Nadelrichtung als Drehachse montiert. Unter den experimentellen Bedingungen (MoK_a-Strahlung, Zr-Filter, Szintillationszähler, Oszillationswinkel 2,75–3,25°, Messzeit 12 Sekunden, 2 Zyklen pro Reflexion) wurden 836 Symmetrie-unabhängige Reflexionen beobachtet, bis zu einem maximalen sin θ/λ -Wert von 0,73. Die Umwandlung in relative F^2 - bzw. F-Werte erfolgte wie üblich. Eine Absorptionskorrektur wurde wegen des kleinen Querschnitts des Kristalls nicht angebracht. (Absorptionskoeffizient für Mo K_{α} -Strahlung = 5,91 cm⁻¹.)

4. Strukturanalysen. Die ungefähren Koordinaten des Chlor-Atoms konnten aus den PATTERson-Projektionen entlang [100] und [010] ermittelt, und diejenigen der Kohlenstoff- und Stickstoff-Atome aus den anschliessenden, groben Elektronendichte-Synthesen abgeleitet werden. Nach Wiederholung der Synthesen mit neu berechneten Vorzeichen erfolgte die Zuordnung der $\pm x$ und $\pm y$ -Koordinaten auf Grund vernünftiger Bindungslängen. Vom so erhaltenen Modell nahm die Verfeinerung mit den dreidimensionalen Daten ihren Ausgang. Der weitere Arbeitsablauf ist in Tab. 1 zusammengefasst¹).

Tabelle 1. Ablauf der dreidimensionalen Verfeinerung

Verwendete Abkürzungen:	SF Strukturfaktor; $\rho(xyz)$ FOURIER-Synthese (F_{o}) ; $D(xyz)$
	Differenz-Fourier-Synthese $(F_o - F_c)$; LS Voll-Matrix-
	Least-Squares (Gewichte nach HUGHES [9]); TF Tempe-
	raturfaktor

Mit Ausnahme von Rechnung 15 wurden alle gemessenen Reflexionen verwendet.

Rechnung	Resultate, Bemerkungen
1. <i>SF</i>	Annahme $B = 4$ Å ² für alle Atome, $R = 15,2\%$
2. $\varrho(xyz)$	s. Fig. 1
3. «Peak»-Zentren	aus den Punkten höchster Elektronendichte [10]
4. <i>SF</i>	R = 14,5%
5. $D_1(xyz)$	sehr geringe Verschiebung der Lage-Parameter,
	Anisotropie des Chlor-Atoms
6. 7. Zwei LS-Zyklen	H-Atome ausgeschlossen, anisotrope TF, $R = 11.6\%$
8. H-Koordinaten	Annahmen wie bei Tab. 3 angegeben
9. 10. 11. Drei <i>LS</i> -Zyklen	TF anisotrop für Cl und N, H eingeschlossen für SF , aber nicht verfeinert, $R = 9.94\%$, mittlerer TF für C-Atome
	$\overline{B} = 2.75 \text{ Å}^2$
12. 13. Zwei LS-Zyklen	anisotrope TF, $R = 9.28\%$
14. Ein LS-Zyklus	H-Atome ausgeschlossen (SF für $D_2(xyz)$)
15. $D_2(xyz)$	104 Reflexe, $\sin \theta / \lambda \le 0.3$, s. Fig. 1
16. H-Koordinaten	mit C- und N-Koordinaten aus 13., s. Tab. 3

5. Durchführung der Rechnungen. Alle Rechnungen, mit Ausnahme der «Least-Squares»-Verfeinerungen, wurden auf der uns zur Verfügung stehenden elektronischen Rechenmaschine IBM 1620 durchgeführt. Die hierfür erforderlichen Programme sind alle in unserem Institut entwickelt worden. Die Voll-Matrix-Least-Squares-Verfeinerung erfolgte auf der CDC 1604-Maschine im Rechenzentrum der ETH. Bekannte Programme [11] wurden für die Anwendung auf dieser Anlage modifiziert²).

Resultate. Tabelle 2 enthält die Lage- und Temperaturfaktor-Parameter für die Cl-, N- und C-Atome, wie sie aus Rechnung 13 (siehe Tab. 1) erhalten wurden. Diese Koordinaten sind die Grundlage für die Berechnung der in Tabelle 3 gegebenen Wasserstoff-Koordinaten (Rechnung 16 in Tab. 1), die in befriedigender Übereinstimmung mit dem Ergebnis der Differenz-FOURIER-Synthese stehen (s. Fig. 1). In Tabelle 4 sind die berechneten Bindungslängen, Bindungs- und Torsionswinkel aufgeführt. Die

¹) Auf eine Wiedergabe der Tabelle der F_{o^-} und F_{o^-} Werte wurde verzichtet. Eine Kopie wird Interessenten auf Wunsch zugesandt.

²) M. FEHLMANN & E. F. MEYER, unveröffentlichte Arbeit.

Darstellung der Molekel in Fig. 2 stützt sich auf ein durch die Atome C2, C3, C2', C3' definiertes, kartesisches Achsensystem X' Y' Z'.

	x	У	Z	
C1	0,9632 (3)	0,9681 (4)	0,1541 (1)	
Ν	0,2469 (14)	0,5248 (14)	0,1581 (4)	
C1	0,4077 (12)	0,5717 (14)	0,0846 (5)	
C2	0,5351 (15)	0,3521 (17)	0,0816 (5)	
C3	0,7007 (11)	0,3975 (16)	0,0055 (4)	

Tabelle 2. Koordinaten und Temperaturfaktoren am Ende der Verfeinerung Koordinaten (zugehörige Standard-Abweichungen · 10⁴)

Temperatur faktoren

Darstellung in der Form $T = \exp[-10^{-5}(\beta_{11}h^2 + \beta_{22}k^2 + \beta_{33}l^2 + \beta_{12}hk + \beta_{13}hl + \beta_{23}kl)]$

	$B(Å^2)$	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
Cl	3,27	2530	2980	313	1840	100	-140
N	3,14	2820	2960	230	2070	110	100
C1	2,48	1930	1980	268	1000	210	-20
C2	3,20	2540	3580	315	3090	180	490
С3	2,61	1410	3250	254	1200	120	400

Tabelle 3. Berechnete Wasserstoff-Koordinaten

 	x	у	Z	
H1N	0,148	0,332	0,157	
H2N	0,149	0,678	0,157	
H3N	0,322	0,505	0,224	
HC1	0,514	0,753	0,103	
H1C2	0,427	0,167	0,072	
H2C2	0,615	0,337	0,146	
H1C3	0,789	0,236	0,002	
H2C3	0,820	0,570	0,020	

Annahmen: C–H = 1,1 Å; H–C–H = 106°; C_{2v} -Symmetrie um Kohlenstoff. N–H = 1,1 Å, H auf den Verbindungsgeraden N–Cl

Tabelle 4. Molekulare Geometrie (s. Fig. 2)

 Bindungslängen, 1	N–Cl-Abstände	۶ (Å)	
C1–C2	1,524	NCl1	3,167
C2C3	1,538	N-Cl2	3,191
C3–C1	1,531	NCl3	3,157
C1–N	1,490		
Bindungswinkel			
C1–C2–C3	110,1°	C1-N-Cl1	113,8°
C2-C3-C1'	110,8°	C1-NCl2	108,9°
C3-C1'-C2'	111,3°	C1-NCl3	111,7°
C3'C1N	110,7°		
C2C1N	109,6°		
 Torsionswinkel			
C1-C2-C3-C1'	– 56,5°	C2-C1-NCl1	– 50,6°
C2-C3-C1'-C2'	+ 57,2°	C2C1NCl2	176,3°
 C3-C1'-C2'-C3'	- 56,8°	C2C1NCl3	+ 57,7°

Die in Tabelle 2 angegebenen Standard-Abweichungen der Lage-Parameter wurden durch Inversion der Least-Squares-Matrix berechnet. Sie sind ungefähr isotrop und betragen etwa 0,002 Å für das Chlor-Atom, 0,008 Å für Stickstoff- und Kohlenstoff-Atome. Dementsprechend sind die Standard-Abweichungen etwa 0,012 Å für eine C-C-Bindungslänge und 40' für einen C-C-C-Winkel. Die Standard-Abweichung für einen C-C-C-C-Torsionswinkel wurde nach HUBER [12] berechnet und beträgt etwa 48'.

Fig. 1. Links: dreidimensionale F_0 -Synthese, (a, b)-Schnitte übereinander gezeichnet. Für Cl-Atome: Konturen im Abstand von 3 $e/Å^3$, beginnend mit 3 $e/Å^3$; für N- und C-Atome: Konturen im Abstand von 1 $e/Å^3$, beginnend mit 2 $e/Å^3$. Die Cl-Atome, die über die Molekel zu liegen kommen, wurden weggelassen.

Rechts: dreidimensionale $(F_0$ - F_0)-Synthese. Eingezeichnet sind beobachtete Maxima (Konturen für 0,2, 0,3, 0,4 $e/Å^3$), Kohlenstoff-Gerüst und berechnete Wasserstoff-Lagen.

7. Diskussion. Wie erwartet, sind beim untersuchten 1,4-trans-Diammoniumcyclohexan-Ion die Substituenten in äquatorialer Lage. Die Annahme der Wasserstoff-Atome der NH₃+-Gruppen auf den Verbindungsgeraden zu den drei nächsten Chlor-Atomen entspricht, wie bei der triklinen Modifikation des 1,6-trans-Diaminocyclodecan-dihydrochlorids [4], einer annähernd gestaffelten Anordnung um die C1-N-Bindung. Der Mittelwert der drei unabhängigen C-C-Bindungslängen, 1,531 Å, liegt sehr nahe beim Durchschnitt der Elektronenbeugungsresultate für die n-Paraffine von Butan bis Heptan, der mit 1,533 Å angegeben wird [2]. Die C-N-Bindungslänge, 1,49 Å, stimmt innerhalb der Fehlergrenzen mit der im Äthylammoniumbromid gefundenen, 1,499 Å, überein [13]. Die drei in der Molekel beobachteten, kristallographisch unabhängigen C-C-C-Winkel betragen 111,3°, 110,8°, 110,1°, wobei der grösste beim substituierten C-Atom auftritt. Da die Standard-Abweichung für jeden dieser Winkel ungefähr 40' beträgt, bedeutet unser Resultat eine kleine positive Abweichung vom idealen Tetraederwinkel. Der gefundene, mittlere Winkel ist aber kleiner als der von DAVIS & HASSEL für das unsubstituierte Cyclohexan ermittelte, und es scheint uns der Mühe wert, noch weitere Cyclohexan-Derivate, mit Vorteil ohne Schweratom, auf die Bindungswinkel im Ring hin zu untersuchen. Mit dieser Aus-

Fig. 2. Zwei Ansichten der Molekel mit ihren Chlor-Nachbarn

Fig. 3. Pachung der Molekeln. N- und Cl-Atome sind als Kreise wiedergegeben, die Zahlen sind z-Koordinaten, in Hundertstel. Als gestrichelte Linien sind die Wasserstoffbrücken in der unteren Hälfte der Zelle eingezeichnet

richtung haben wir nun detaillierte Röntgen-Analysen der 1,4-cis- und -trans-Dicarbonsäuren begonnen.

Die Ringverflachung zeigt sich in der Abweichung der drei beobachteten Torsionswinkel 56,5°, 57,2°, 56,8° vom Idealwert 60°. (Für einen Ring der Symmetrie D_{3d} ($\overline{3}m$) wird der funktionale Zusammenhang des Torsionswinkels τ mit dem Bindungswinkel θ durch 2 sin² ($\tau/2$) = (1 + 2 cos θ)/(1 + cos θ) gegeben.) Auch für 1,4-Dioxan [6], sowie für einige 1,4-Dioxan-Derivate [14], sind solche Verflachungen festgestellt worden.

Die Packung der Molekeln im Kristall wird durch die N-Cl-Koordination bedingt, die derjenigen der triklinen Modifikation des 1,6-*trans*-Diaminocyclodecan-dihydrochlorids ähnlich ist (s. Fig. 3). Eine solche, durch in der Verlängerung der N-H-Bindungen liegende Chlor-Atome charakterisierte Anordnung konnte bereits mit der blossen Kenntnis der Zellkonstanten vermutet werden, da bei Annahme eines H-N-H-Winkels von ~ 109,5° und eines N-Cl-Abstandes von ~ 3,2 Å ein Cl-Cl-Abstand von ~ 5,2 Å resultiert, welcher der Länge der *b*-Achse entspricht.

Tabelle 5. Behandlung des Ions als starrer Körper, Zusammenstellung der Ergebnisse5A. Koordinaten, bezogen auf die Hauptträgheitsachsen (Å)

 Atom	Х	Y	Ζ	
C1	-0,33034	0,00750	-1,43049	
C2	0,19186	-1,25814	-0,76045	
C3	-0,19251	-1,26440	0,72905	
Ν	0,05564	0,00722	2,86965	

Transformation der Kristallkoordinaten x, y, z auf die kartesischen, molekularen Koordinaten X, Y, Z

ſX]		「 −0,4574	0,2465	0,8544]	$\int ax + by \cos \gamma$	_ 2,72243 <u>_</u>
Y	=	-0,6922	0,5045	0,5161	-cz	
$\lfloor z \rfloor$		0,5582	0,8275	-0,0601	by $\sin \gamma$	- 2,59496]

Atom	U	11	U	22	U	33	L	J ₁₂	U	13	U	23
C1	214	211	490	552	302	391	29	_47	34	66	76	-185
C2	268	261	673	503	529	419	90	-58	148	90	-278	-197
C3	296	304	410	503	362	421	-110	-56	121	99	-127	-170
Ν	257	260	627	641	430	391	-33	-43	23	71	-253	-182

5B. Beobachtete und berechnete U_{ii} -Werte (10⁻⁴ Å²)

5C. T- und w-Matrizen, Eigenwerte und Komponenten der Eigenvektoren

$T = (Å^2)$	0,0195	0,0056 0,0495	0,0070 -0,0183 0,0391	$\omega = (\text{Grad}^2)$	6,00	-0,59 2,57	-4,93 3,65 17,30
Eigenwerte	Kompon 1	enten der Ei	genvektoren	Eigenwerte	Kompone	nten der E	igenvekt.
0,0172 0,0258 0,0650	0,9489 0,2539 0,1874	<i>m</i> 0,0145 0,6285 0,7777	n -0,3152 0,7352 0,6601	1,61 4,36 19,94	0,1847 0,9240 0,3348	-0,9429 0,2627 -0,2046	" 0,2770 0,2779 0,9198

Es erschien uns sinnvoll, die individuellen Temperaturbewegungen der Atome durch eine Bewegung des ganzen, starr gedachten Ions zu deuten zu versuchen. Nach der hierfür von CRUICKSHANK [15] ausgearbeiteten Methode wurden die in U_{ij} -Werte umgewandelten Temperaturfaktor-Parameter zur Bestimmung der Translations- und Rotations-Schwingungstensoren verwendet. Die Ergebnisse sind in Tabelle 5 zusammengestellt. Die Hauptträgheitsachsen des Ions wurden wie folgt bezeichnet: X senkrecht zur besten Ebene, Z als N–N'-Richtung. Die dem grössten Eigenwert entsprechende Hauptachse des ω -Ellipsoids weicht nicht mehr als 12° von der Parallelen zu N–C1 ab. Damit ist eine Drehung des Ions um diese Richtung angezeigt, wobei seine mittlere Lage der gestaffelten Anordnung um die N–C1-Bindung entspricht. Als Konsequenz einer Rotationsschwingung werden die scheinbaren Atomlagen etwas gegen die Achse hin verschoben [16]. Diese Verschiebung betrifft hier hauptsächlich die vier nicht-substituierten C-Atome, ist indessen mit 0,003 Å weit geringer als die für die Atomlagen angegebenen Standard-Abweichungen.

Zur Ausführung dieser Arbeit standen Mittel des Schweizerischen Nationalfonds zur Förderung der Wissenschaftlichen Forschung zur Verfügung. Viele der Rechnungen wurden auf dem Control-Data Corporation CDC-1604-Computer im Rechenzentrum der ETH durch geführt. Wir danken den Herren A. Schai und H. Ammann für ihre Mithilfe.

SUMMARY

Crystals of 1,4-*trans*-diaminocyclohexane dihydrochloride are monoclinic, a = 6.36, b = 5.27, c = 14.91 Å, $\gamma = 100^{\circ}$, space group $P2_1/n$ (first setting), Z = 2. The structure has been determined by three-dimensional analysis based on counter data. The mean C-C-C-angle in the cyclohexane ring is 110,7°.

Organisch-chemisches Laboratorium der Eidg. Techn. Hochschule, Zürich

LITERATURVERZEICHNIS

- [1] C. K. INGOLD, J. chem. Soc. 1921, 305.
- [2] R. A. BONHAM & L. S. BARTELL, J. Amer. chem. Soc. 81, 3491 (1959).
- [3] R. E. MARSH, Acta crystallogr. 15, 54 (1962).; H. M. M. SHEARER & V. VAND, *ibid. 9*, 379 (1956); S. S. TAVALE, *ibid. 17*, 215 (1964); J. HOUSTY & M. HOSPITAL, *ibid. 17*, 1387 (1964).
- [4] E. HUBER-BUSER & J. D. DUNITZ, Helv. 43, 760 (1960).
- [5] R. F. BRYAN & J. D. DUNITZ, Helv. 43, 3 (1960); J. D. DUNITZ & K. VENKATESAN, Helv. 44, 2033 (1061); J. D. DUNITZ & H. P. WEBER, Helv. 47, 1138 (1964).
- [6] M. DAVIS & O. HASSEL, Acta chem. scand. 17, 1181 (1963).
- [7] R. A. WOHL, Chimia 1964, 219.
- [8] U. W. Arndt & D. C. Phillips, Acta crystallogr. 14, 807 (1961).
- [9] E. W. HUGHES, J. Amer. chem. Soc. 63, 1737 (1941).
- [10] D. P. SHOEMAKER, J. DONOHUE, V. SCHOMAKER & R. B. COREY, J. Amer. chem. Soc. 72, 2328 (1950).
- [11] P. K. GANTZEL, R. A. SPARKS & K. N. TRUEBLOOD, Amer. Crystallogr. Assoc. Computer Program No. 317; W. R. BUSING, K. O. MARTIN & H. A. LEVY, Program ORFLS, Oak Ridge National Laboratory, Oak Ridge, Tenn.
- [12] P. J. HUBER, Helv. 44, 2027 (1961).
- [13] F. JELLINEK, Acta crystallogr. 11, 626 (1958).
- [14] C. Altona, Dissertation, Leyden 1964.
- [15] D. W. J. CRUICKSHANK, Acta crystallogr. 9, 754 (1956).
- [16] D. W. J. CRUICKSHANK, Acta crystallogr. 9, 757 (1956); 14, 896 (1961).